Performs data driven smooth non-parametric two-sample test against one-sided alternatives (stochastic dominance). Suppose that we have random samples from two distributions F and G. The null hypothesis is that F(x) < G(x) for some x while the alternative is that at F(x) >= G(x) for all x with strict inequality for at least one x. Detailed description of the test statistic is provided in Ledwina and Wylupek (2012).

ddst.againststochdom.test(
  x,
  y,
  k.N = 4,
  alpha = 0.05,
  t,
  nr = 1e+05,
  compute.cv = FALSE
)

Arguments

x

a (non-empty) numeric vector of data

y

a (non-empty) numeric vector of data

k.N

an integer specifying a level of complexity of the grid considered, only for advanced users

alpha

a significance level

t

an alpha-dependent tunning parameter in the penalty in the model selection rule

nr

an integer specifying the number of runs for a p-value and a critical value computation if any

compute.cv

a logical value indicating whether to compute a critical value corresponding to the significance level alpha or not

References

Two-sample test against one-sided alternatives. Ledwina and Wylupek (2012). https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-9469.2011.00787.x

Examples

set.seed(7) # H0 is true x <- runif(80) y <- runif(80) t <- ddst.againststochdom.test(x, y, alpha = 0.05, t = 2.2, k.N = 4) t
#> #> Data Driven Test Against Stochastic Dominance #> #> data: x, alpha: 0.05, t: 2.2, k.N: 4 #> VT = 0.9, T = 1 #>
plot(t)
# H0 is false # known fixed alternative x <- runif(80) y <- rbeta(80,4,2) t <- ddst.againststochdom.test(x, y, alpha = 0.05, t = 2.2, k.N = 4) t
#> #> Data Driven Test Against Stochastic Dominance #> #> data: x, alpha: 0.05, t: 2.2, k.N: 4 #> VT = 41.6, T = 5 #>
plot(t)