Performs data driven smooth test for composite hypothesis of exponentiality. Null density is given by \(f(z;gamma) = exp(-z/gamma)\) for z >= 0 and 0 otherwise. Modelling alternatives similarly as in Kallenberg and Ledwina (1997 a,b).
ddst.exp.test( x, base = ddst.base.legendre, d.n = 10, c = 100, nr = 1e+05, compute.p = TRUE, alpha = 0.05, compute.cv = TRUE, ... )
x | a (non-empty) numeric vector of data values |
---|---|
base | a function which returns an orthonormal system, possible choice: |
d.n | an integer specifying the maximum dimension considered, only for advanced users |
c | a calibrating parameter in the penalty in the model selection rule |
nr | an integer specifying the number of runs for a p-value and a critical value computation if any |
compute.p | a logical value indicating whether to compute a p-value or not |
alpha | a significance level |
compute.cv | a logical value indicating whether to compute a critical value corresponding to the significance level alpha or not |
... | further arguments |
An object of class htest
the value of the test statistic.
the number of choosen coordinates (k).
a character string indicating the parameters of performed test.
a character string giving the name(s) of the data.
the p-value for the test, computed only if compute.p=T
.
Kallenberg, W.C.M., Ledwina, T. (1997 a). Data driven smooth tests for composite hypotheses: Comparison of powers. \( J. Statist. Comput. Simul.\) 59, 101--121.
Kallenberg, W.C.M., Ledwina, T. (1997 b). Data driven smooth tests when the hypothesis is composite. \( J. Amer. Statist. Assoc.\) 92, 1094--1104.
#> #> Data Driven Smooth Test for Expotentiality #> #> data: z, base: ddst.base.legendre, c: 100, d.n: 10 #> W*T* = 2.1593, T* = 1, p-value = 0.1748 #>plot(t)#> #> Data Driven Smooth Test for Expotentiality #> #> data: z, base: ddst.base.legendre, c: 100, d.n: 10 #> W*T* = 15.543, T* = 1, p-value = 0.00484 #>t$p.value#> [1] 0.00484plot(t)