Performs data driven smooth test for the classical k-sample problem. Suppose that we have random samples from k distributions F_i where i = 1, ..., k. The null hypothesis is that F_1 = ... = F_k while the alternative is that at least two distributions are different. Detailed description of the test statistic is provided in Wylupek (2010).
ddst.ksample.test( x, d.N = 12, c = 2.3, nr = 1e+05, compute.p = TRUE, alpha = 0.05, compute.cv = TRUE )
x | a list of k (non-empty) numeric vectors of data |
---|---|
d.N | an integer specifying the maximum dimension considered, only for advanced users |
c | a calibrating parameter in the penalty in the model selection rule |
nr | an integer specifying the number of runs for a p-value and a critical value computation if any |
compute.p | a logical value indicating whether to compute a p-value or not |
alpha | a significance level |
compute.cv | a logical value indicating whether to compute a critical value corresponding to the significance level alpha or not |
Data-driven k-sample tests. Wylupek (2010) https://www.jstor.org/stable/40586684?seq=1
set.seed(7) # H0 is false x <- runif(80) y <- rexp(80, 1) z <- runif(80) t <- ddst.ksample.test(list(x, y, z))#> Error in ddst.ksample.Nk(x.vector, n, d_N = d.n, c = c): object 'd.n' not foundt#> function (x) #> UseMethod("t") #> <bytecode: 0x7fa25a157eb0> #> <environment: namespace:base>plot(t)#> Error in ddst.ksample.Nk(x.vector, n, d_N = d.n, c = c): object 'd.n' not foundt#> function (x) #> UseMethod("t") #> <bytecode: 0x7fa25a157eb0> #> <environment: namespace:base>plot(t)