R/ddst.twosample.test.R
ddst.twosample.test.RdPerforms data driven smooth test for the classical two-sample problem. It is a special case of data driven test for k-samples. Detailed description of the test statistic is provided in Wylupek (2010).
ddst.twosample.test( x, y, d.N = 12, c = 2, B = 1e+05, compute.p = TRUE, alpha = 0.05, compute.cv = TRUE )
| x | a (non-empty) numeric vector of data |
|---|---|
| y | a (non-empty) numeric vector of data |
| d.N | an integer specifying the maximum dimension considered, only for advanced users |
| c | a calibrating parameter in the penalty in the model selection rule |
| compute.p | a logical value indicating whether to compute a p-value or not |
| alpha | a significance level |
| compute.cv | a logical value indicating whether to compute a critical value corresponding to the significance level alpha or not |
| nr | an integer specifying the number of runs for a p-value and a critical value computation if any |
Data-driven k-sample tests. Wylupek (2010) https://www.jstor.org/stable/40586684?seq=1
#> Error in ddst.ksample.Nk(x.vector, n, d_N = d.n, c = c): object 'd.n' not foundt#> function (x) #> UseMethod("t") #> <bytecode: 0x7fa25a157eb0> #> <environment: namespace:base>plot(t)#> Error in ddst.ksample.Nk(x.vector, n, d_N = d.n, c = c): object 'd.n' not foundt#> function (x) #> UseMethod("t") #> <bytecode: 0x7fa25a157eb0> #> <environment: namespace:base>plot(t)