Function `ceteris_paribus_layer()` adds a layer to a plot created with `plot.ceteris_paribus_explainer()` plots. Various parameters help to decide what should be plotted, profiles, aggregated profiles, points or rugs.

ceteris_paribus_layer(x, ..., size = 1, alpha = 0.3, color = "black",
  size_points = 2, alpha_points = 1, color_points = color,
  size_rugs = 0.5, alpha_rugs = 1, color_rugs = color,
  size_residuals = 1, alpha_residuals = 1, color_residuals = color,
  only_numerical = TRUE, show_profiles = TRUE,
  show_observations = TRUE, show_rugs = FALSE,
  show_residuals = FALSE, aggregate_profiles = NULL, as.gg = FALSE,
  facet_ncol = NULL, selected_variables = NULL, init_plot = FALSE)

Arguments

x

a ceteris paribus explainer produced with function `ceteris_paribus()`

...

other explainers that shall be plotted together

size

a numeric. Size of lines to be plotted

alpha

a numeric between 0 and 1. Opacity of lines

color

a character. Either name of a color or name of a variable that should be used for coloring

size_points

a numeric. Size of points to be plotted

alpha_points

a numeric between 0 and 1. Opacity of points

color_points

a character. Either name of a color or name of a variable that should be used for coloring

size_rugs

a numeric. Size of rugs to be plotted

alpha_rugs

a numeric between 0 and 1. Opacity of rugs

color_rugs

a character. Either name of a color or name of a variable that should be used for coloring

size_residuals

a numeric. Size of line and points to be plotted for residuals

alpha_residuals

a numeric between 0 and 1. Opacity of points and lines for residuals

color_residuals

a character. Either name of a color or name of a variable that should be used for coloring for residuals

only_numerical

a logical. If TRUE then only numerical variables will be plotted. If FALSE then only categorical variables will be plotted.

show_profiles

a logical. If TRUE then profiles will be plotted. Either individual or aggregate (see `aggregate_profiles`)

show_observations

a logical. If TRUE then individual observations will be marked as points

show_rugs

a logical. If TRUE then individual observations will be marked as rugs

show_residuals

a logical. If TRUE then residuals will be plotted as a line ended with a point

aggregate_profiles

function. If NULL (default) then individual profiles will be plotted. If a function (e.g. mean or median) then profiles will be aggregated and only the aggregate profile will be plotted

as.gg

if TRUE then returning plot will have gg class

facet_ncol

number of columns for the `facet_wrap()`.

selected_variables

if not NULL then only `selected_variables` will be presented

init_plot

technical parameter, do not use.

Value

a ggplot2 object

Examples

library("DALEX")
library("randomForest") set.seed(59) apartments_rf_model <- randomForest(m2.price ~ construction.year + surface + floor + no.rooms + district, data = apartments) explainer_rf <- explain(apartments_rf_model, data = apartmentsTest[,2:6], y = apartmentsTest$m2.price) apartments_small_1 <- apartmentsTest[1,] apartments_small_2 <- select_sample(apartmentsTest, n = 20) apartments_small_3 <- select_neighbours(apartmentsTest, apartments_small_1, n = 20) cp_rf_y1 <- ceteris_paribus(explainer_rf, apartments_small_1, y = apartments_small_1$m2.price) cp_rf_y2 <- ceteris_paribus(explainer_rf, apartments_small_2, y = apartments_small_2$m2.price) cp_rf_y3 <- ceteris_paribus(explainer_rf, apartments_small_3, y = apartments_small_3$m2.price) tmp <- plot(cp_rf_y3, show_profiles = TRUE, show_observations = TRUE, show_residuals = TRUE, color = "black", alpha = 0.2, color_residuals = "darkred", selected_variables = c("construction.year", "surface")) tmp <- plot(cp_rf_y3, show_profiles = TRUE, show_observations = TRUE, show_residuals = TRUE, color = "black", alpha = 0.2, color_residuals = "darkred") tmp
tmp + ceteris_paribus_layer(cp_rf_y2, show_profiles = TRUE, show_observations = TRUE, alpha = 0.2, color = "darkblue")
tmp + ceteris_paribus_layer(cp_rf_y2, show_profiles = TRUE, show_observations = TRUE, alpha = 0.2, color = "darkblue") + ceteris_paribus_layer(cp_rf_y2, show_profiles = TRUE, show_observations = FALSE, alpha = 1, size = 2, color = "blue", aggregate_profiles = mean) + ceteris_paribus_layer(cp_rf_y1, show_profiles = TRUE, show_observations = FALSE, alpha = 1, size = 2, color = "red", aggregate_profiles = mean)